منابع مشابه
G-quadruplex formation in telomeres enhances POT1/TPP1 protection against RPA binding.
Human telomeres terminate with a single-stranded 3' G overhang, which can be recognized as a DNA damage site by replication protein A (RPA). The protection of telomeres (POT1)/POT1-interacting protein 1 (TPP1) heterodimer binds specifically to single-stranded telomeric DNA (ssTEL) and protects G overhangs against RPA binding. The G overhang spontaneously folds into various G-quadruplex (GQ) con...
متن کاملMechanism of Werner DNA Helicase: POT1 and RPA Stimulates WRN to Unwind beyond Gaps in the Translocating Strand
WRN belongs to the RecQ family of DNA helicases and it plays a role in recombination, replication, telomere maintenance and long-patch base excision repair. Here, we demonstrate that WRN efficiently unwinds DNA substrates containing a 1-nucleotide gap in the translocating DNA strand, but when the gap size is increased to 3-nucleotides unwinding activity significantly declines. In contrast, E. c...
متن کاملDNA-PKcs phosphorylates hnRNP-A1 to facilitate the RPA-to-POT1 switch and telomere capping after replication
The heterogeneous nuclear ribonucleoprotein A1 (hnRNP-A1) has been implicated in telomere protection and telomerase activation. Recent evidence has further demonstrated that hnRNP-A1 plays a crucial role in maintaining newly replicated telomeric 3' overhangs and facilitating the switch from replication protein A (RPA) to protection of telomeres 1 (POT1). The role of hnRNP-A1 in telomere protect...
متن کاملp53 modulates RPA-dependent and RPA-independent WRN helicase activity.
Werner syndrome is a hereditary disorder characterized by the early onset of age-related symptoms, including cancer. The absence of a p53-WRN helicase interaction may disrupt the signal to direct S-phase cells into apoptosis for programmed cell death and contribute to the pronounced genomic instability and cancer predisposition in Werner syndrome cells. Results from coimmunoprecipitation studie...
متن کاملHelicase Activity p53 Modulates RPA-Dependent and RPA-Independent WRN
Werner syndrome is a hereditary disorder characterized by the early onset of age-related symptoms, including cancer. The absence of a p53-WRN helicase interaction may disrupt the signal to direct S-phase cells into apoptosis for programmed cell death and contribute to the pronounced genomic instability and cancer predisposition in Werner syndrome cells. Results from coimmunoprecipitation studie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cell Cycle
سال: 2012
ISSN: 1538-4101,1551-4005
DOI: 10.4161/cc.11.4.19061